path: root/include/uapi/linux/inet_diag.h
AgeCommit message (Collapse)Author
2019-02-12inet_diag: fix reporting cgroup classid and fallback to priorityKonstantin Khlebnikov
Field idiag_ext in struct inet_diag_req_v2 used as bitmap of requested extensions has only 8 bits. Thus extensions starting from DCTCPINFO cannot be requested directly. Some of them included into response unconditionally or hook into some of lower 8 bits. Extension INET_DIAG_CLASS_ID has not way to request from the beginning. This patch bundle it with INET_DIAG_TCLASS (ipv6 tos), fixes space reservation, and documents behavior for other extensions. Also this patch adds fallback to reporting socket priority. This filed is more widely used for traffic classification because ipv4 sockets automatically maps TOS to priority and default qdisc pfifo_fast knows about that. But priority could be changed via setsockopt SO_PRIORITY so INET_DIAG_TOS isn't enough for predicting class. Also cgroup2 obsoletes net_cls classid (it always zero), but we cannot reuse this field for reporting cgroup2 id because it is 64-bit (ino+gen). So, after this patch INET_DIAG_CLASS_ID will report socket priority for most common setup when net_cls isn't set and/or cgroup2 in use. Fixes: 0888e372c37f ("net: inet: diag: expose sockets cgroup classid") Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-02inet_diag: Add equal-operator for portsKristian Evensen
inet_diag currently provides less/greater than or equal operators for comparing ports when filtering sockets. An equal comparison can be performed by combining the two existing operators, or a user can for example request a port range and then do the final filtering in userspace. However, these approaches both have drawbacks. Implementing equal using LE/GE causes the size and complexity of a filter to grow quickly as the number of ports increase, while it on busy machines would be great if the kernel only returns information about relevant sockets. This patch introduces source and destination port equal operators. INET_DIAG_BC_S_EQ is used to match a source port, INET_DIAG_BC_D_EQ a destination port, and usage is the same as for the existing port operators. I.e., the port to match is stored in the no-member of the next inet_diag_bc_op-struct in the filter. Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-02License cleanup: add SPDX license identifier to uapi header files with no ↵Greg Kroah-Hartman
license Many user space API headers are missing licensing information, which makes it hard for compliance tools to determine the correct license. By default are files without license information under the default license of the kernel, which is GPLV2. Marking them GPLV2 would exclude them from being included in non GPLV2 code, which is obviously not intended. The user space API headers fall under the syscall exception which is in the kernels COPYING file: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". otherwise syscall usage would not be possible. Update the files which contain no license information with an SPDX license identifier. The chosen identifier is 'GPL-2.0 WITH Linux-syscall-note' which is the officially assigned identifier for the Linux syscall exception. SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-01tcp_diag: report TCP MD5 signing keys and addressesIvan Delalande
Report TCP MD5 (RFC2385) signing keys, addresses and address prefixes to processes with CAP_NET_ADMIN requesting INET_DIAG_INFO. Currently it is not possible to retrieve these from the kernel once they have been configured on sockets. Signed-off-by: Ivan Delalande <colona@arista.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-18net: inet: diag: expose sockets cgroup classidLevin, Alexander (Sasha Levin)
This is useful for directly looking up a task based on class id rather than having to scan through all open file descriptors. Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-23net: ip, diag -- Add diag interface for raw socketsCyrill Gorcunov
In criu we are actively using diag interface to collect sockets present in the system when dumping applications. And while for unix, tcp, udp[lite], packet, netlink it works as expected, the raw sockets do not have. Thus add it. v2: - add missing sock_put calls in raw_diag_dump_one (by eric.dumazet@) - implement @destroy for diag requests (by dsa@) v3: - add export of raw_abort for IPv6 (by dsa@) - pass net-admin flag into inet_sk_diag_fill due to changes in net-next branch (by dsa@) v4: - use @pad in struct inet_diag_req_v2 for raw socket protocol specification: raw module carries sockets which may have custom protocol passed from socket() syscall and sole @sdiag_protocol is not enough to match underlied ones - start reporting protocol specifed in socket() call when sockets are raw ones for the same reason: user space tools like ss may parse this attribute and use it for socket matching v5 (by eric.dumazet@): - use sock_hold in raw_sock_get instead of atomic_inc, we're holding (raw_v4_hashinfo|raw_v6_hashinfo)->lock when looking up so counter won't be zero here. v6: - use sdiag_raw_protocol() helper which will access @pad structure used for raw sockets protocol specification: we can't simply rename this member without breaking uapi v7: - sine sdiag_raw_protocol() helper is not suitable for uapi lets rather make an alias structure with proper names. __check_inet_diag_req_raw helper will catch if any of structure unintentionally changed. CC: David S. Miller <davem@davemloft.net> CC: Eric Dumazet <eric.dumazet@gmail.com> CC: David Ahern <dsa@cumulusnetworks.com> CC: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> CC: James Morris <jmorris@namei.org> CC: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> CC: Patrick McHardy <kaber@trash.net> CC: Andrey Vagin <avagin@openvz.org> CC: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp_bbr: add BBR congestion controlNeal Cardwell
This commit implements a new TCP congestion control algorithm: BBR (Bottleneck Bandwidth and RTT). A detailed description of BBR will be published in ACM Queue, Vol. 14 No. 5, September-October 2016, as "BBR: Congestion-Based Congestion Control". BBR has significantly increased throughput and reduced latency for connections on Google's internal backbone networks and google.com and YouTube Web servers. BBR requires only changes on the sender side, not in the network or the receiver side. Thus it can be incrementally deployed on today's Internet, or in datacenters. The Internet has predominantly used loss-based congestion control (largely Reno or CUBIC) since the 1980s, relying on packet loss as the signal to slow down. While this worked well for many years, loss-based congestion control is unfortunately out-dated in today's networks. On today's Internet, loss-based congestion control causes the infamous bufferbloat problem, often causing seconds of needless queuing delay, since it fills the bloated buffers in many last-mile links. On today's high-speed long-haul links using commodity switches with shallow buffers, loss-based congestion control has abysmal throughput because it over-reacts to losses caused by transient traffic bursts. In 1981 Kleinrock and Gale showed that the optimal operating point for a network maximizes delivered bandwidth while minimizing delay and loss, not only for single connections but for the network as a whole. Finding that optimal operating point has been elusive, since any single network measurement is ambiguous: network measurements are the result of both bandwidth and propagation delay, and those two cannot be measured simultaneously. While it is impossible to disambiguate any single bandwidth or RTT measurement, a connection's behavior over time tells a clearer story. BBR uses a measurement strategy designed to resolve this ambiguity. It combines these measurements with a robust servo loop using recent control systems advances to implement a distributed congestion control algorithm that reacts to actual congestion, not packet loss or transient queue delay, and is designed to converge with high probability to a point near the optimal operating point. In a nutshell, BBR creates an explicit model of the network pipe by sequentially probing the bottleneck bandwidth and RTT. On the arrival of each ACK, BBR derives the current delivery rate of the last round trip, and feeds it through a windowed max-filter to estimate the bottleneck bandwidth. Conversely it uses a windowed min-filter to estimate the round trip propagation delay. The max-filtered bandwidth and min-filtered RTT estimates form BBR's model of the network pipe. Using its model, BBR sets control parameters to govern sending behavior. The primary control is the pacing rate: BBR applies a gain multiplier to transmit faster or slower than the observed bottleneck bandwidth. The conventional congestion window (cwnd) is now the secondary control; the cwnd is set to a small multiple of the estimated BDP (bandwidth-delay product) in order to allow full utilization and bandwidth probing while bounding the potential amount of queue at the bottleneck. When a BBR connection starts, it enters STARTUP mode and applies a high gain to perform an exponential search to quickly probe the bottleneck bandwidth (doubling its sending rate each round trip, like slow start). However, instead of continuing until it fills up the buffer (i.e. a loss), or until delay or ACK spacing reaches some threshold (like Hystart), it uses its model of the pipe to estimate when that pipe is full: it estimates the pipe is full when it notices the estimated bandwidth has stopped growing. At that point it exits STARTUP and enters DRAIN mode, where it reduces its pacing rate to drain the queue it estimates it has created. Then BBR enters steady state. In steady state, PROBE_BW mode cycles between first pacing faster to probe for more bandwidth, then pacing slower to drain any queue that created if no more bandwidth was available, and then cruising at the estimated bandwidth to utilize the pipe without creating excess queue. Occasionally, on an as-needed basis, it sends significantly slower to probe for RTT (PROBE_RTT mode). BBR has been fully deployed on Google's wide-area backbone networks and we're experimenting with BBR on Google.com and YouTube on a global scale. Replacing CUBIC with BBR has resulted in significant improvements in network latency and application (RPC, browser, and video) metrics. For more details please refer to our upcoming ACM Queue publication. Example performance results, to illustrate the difference between BBR and CUBIC: Resilience to random loss (e.g. from shallow buffers): Consider a netperf TCP_STREAM test lasting 30 secs on an emulated path with a 10Gbps bottleneck, 100ms RTT, and 1% packet loss rate. CUBIC gets 3.27 Mbps, and BBR gets 9150 Mbps (2798x higher). Low latency with the bloated buffers common in today's last-mile links: Consider a netperf TCP_STREAM test lasting 120 secs on an emulated path with a 10Mbps bottleneck, 40ms RTT, and 1000-packet bottleneck buffer. Both fully utilize the bottleneck bandwidth, but BBR achieves this with a median RTT 25x lower (43 ms instead of 1.09 secs). Our long-term goal is to improve the congestion control algorithms used on the Internet. We are hopeful that BBR can help advance the efforts toward this goal, and motivate the community to do further research. Test results, performance evaluations, feedback, and BBR-related discussions are very welcome in the public e-mail list for BBR: https://groups.google.com/forum/#!forum/bbr-dev NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled, since pacing is integral to the BBR design and implementation. BBR without pacing would not function properly, and may incur unnecessary high packet loss rates. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-08net: inet: diag: expose the socket mark to privileged processes.Lorenzo Colitti
This adds the capability for a process that has CAP_NET_ADMIN on a socket to see the socket mark in socket dumps. Commit a52e95abf772 ("net: diag: allow socket bytecode filters to match socket marks") recently gave privileged processes the ability to filter socket dumps based on mark. This patch is complementary: it ensures that the mark is also passed to userspace in the socket's netlink attributes. It is useful for tools like ss which display information about sockets. Tested: https://android-review.googlesource.com/270210 Signed-off-by: Lorenzo Colitti <lorenzo@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-24net: diag: allow socket bytecode filters to match socket marksLorenzo Colitti
This allows a privileged process to filter by socket mark when dumping sockets via INET_DIAG_BY_FAMILY. This is useful on systems that use mark-based routing such as Android. The ability to filter socket marks requires CAP_NET_ADMIN, which is consistent with other privileged operations allowed by the SOCK_DIAG interface such as the ability to destroy sockets and the ability to inspect BPF filters attached to packet sockets. Tested: https://android-review.googlesource.com/261350 Signed-off-by: Lorenzo Colitti <lorenzo@google.com> Acked-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-28net: diag: Add support to filter on device indexDavid Ahern
Add support to inet_diag facility to filter sockets based on device index. If an interface index is in the filter only sockets bound to that index (sk_bound_dev_if) are returned. Signed-off-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-26sock_diag: align nlattr properly when neededNicolas Dichtel
I also fix the value of INET_DIAG_MAX. It's wrong since commit 8f840e47f190 which is only in net-next right now, thus I didn't make a separate patch. Fixes: 8f840e47f190 ("sctp: add the sctp_diag.c file") Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-15sctp: add the sctp_diag.c fileXin Long
This one will implement all the interface of inet_diag, inet_diag_handler. which includes sctp_diag_dump, sctp_diag_dump_one and sctp_diag_get_info. It will work as a module, and register inet_diag_handler when loading. v2->v3: - fix the mistake in inet_assoc_attr_size(). - change inet_diag_msg_laddrs_fill() name to inet_diag_msg_sctpladdrs_fill. - change inet_diag_msg_paddrs_fill() name to inet_diag_msg_sctpaddrs_fill. - add inet_diag_msg_sctpinfo_fill() to make asoc/ep fill code clearer. - add inet_diag_msg_sctpasoc_fill() to make asoc fill code clearer. - merge inet_asoc_diag_fill() and inet_ep_diag_fill() to inet_sctp_diag_fill(). - call sctp_diag_get_info() directly, instead by handler, cause the caller is in the same file with it. - call lock_sock in sctp_tsp_dump_one() to make sure we call get sctp info safely. - after lock_sock(sk), we should check sk != assoc->base.sk. - change mem[SK_MEMINFO_WMEM_ALLOC] to asoc->sndbuf_used for asoc dump when asoc->ep->sndbuf_policy is set. don't use INET_DIAG_MEMINFO attr any more. Signed-off-by: Xin Long <lucien.xin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-24net: inet_diag: export IPV6_V6ONLY sockoptPhil Sutter
For AF_INET6 sockets, the value of struct ipv6_pinfo.ipv6only is exported to userspace. It indicates whether a socket bound to in6addr_any listens on IPv4 as well as IPv6. Since the socket is natively IPv6, it is not listed by e.g. 'ss -l -4'. This patch is accompanied by an appropriate one for iproute2 to enable the additional information in 'ss -e'. Signed-off-by: Phil Sutter <phil@nwl.cc> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-15sock_diag: implement a get_info handler for inetCraig Gallek
This get_info handler will simply dispatch to the appropriate existing inet protocol handler. This patch also includes a new netlink attribute (INET_DIAG_PROTOCOL). This attribute is currently only used for multicast messages. Without this attribute, there is no way of knowing the IP protocol used by the socket information being broadcast. This attribute is not necessary in the 'dump' variant of this protocol (though it could easily be added) because dump requests are issued for specific family/protocol pairs. Tested: ss -E (note, the -E option has not yet been merged into the upstream version of ss). Signed-off-by: Craig Gallek <kraig@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-04-29tcp: prepare CC get_info() access from getsockopt()Eric Dumazet
We would like that optional info provided by Congestion Control modules using netlink can also be read using getsockopt() This patch changes get_info() to put this information in a buffer, instead of skb, like tcp_get_info(), so that following patch can reuse this common infrastructure. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29net: tcp: add DCTCP congestion control algorithmDaniel Borkmann
This work adds the DataCenter TCP (DCTCP) congestion control algorithm [1], which has been first published at SIGCOMM 2010 [2], resp. follow-up analysis at SIGMETRICS 2011 [3] (and also, more recently as an informational IETF draft available at [4]). DCTCP is an enhancement to the TCP congestion control algorithm for data center networks. Typical data center workloads are i.e. i) partition/aggregate (queries; bursty, delay sensitive), ii) short messages e.g. 50KB-1MB (for coordination and control state; delay sensitive), and iii) large flows e.g. 1MB-100MB (data update; throughput sensitive). DCTCP has therefore been designed for such environments to provide/achieve the following three requirements: * High burst tolerance (incast due to partition/aggregate) * Low latency (short flows, queries) * High throughput (continuous data updates, large file transfers) with commodity, shallow buffered switches The basic idea of its design consists of two fundamentals: i) on the switch side, packets are being marked when its internal queue length > threshold K (K is chosen so that a large enough headroom for marked traffic is still available in the switch queue); ii) the sender/host side maintains a moving average of the fraction of marked packets, so each RTT, F is being updated as follows: F := X / Y, where X is # of marked ACKs, Y is total # of ACKs alpha := (1 - g) * alpha + g * F, where g is a smoothing constant The resulting alpha (iow: probability that switch queue is congested) is then being used in order to adaptively decrease the congestion window W: W := (1 - (alpha / 2)) * W The means for receiving marked packets resp. marking them on switch side in DCTCP is the use of ECN. RFC3168 describes a mechanism for using Explicit Congestion Notification from the switch for early detection of congestion, rather than waiting for segment loss to occur. However, this method only detects the presence of congestion, not the *extent*. In the presence of mild congestion, it reduces the TCP congestion window too aggressively and unnecessarily affects the throughput of long flows [4]. DCTCP, as mentioned, enhances Explicit Congestion Notification (ECN) processing to estimate the fraction of bytes that encounter congestion, rather than simply detecting that some congestion has occurred. DCTCP then scales the TCP congestion window based on this estimate [4], thus it can derive multibit feedback from the information present in the single-bit sequence of marks in its control law. And thus act in *proportion* to the extent of congestion, not its *presence*. Switches therefore set the Congestion Experienced (CE) codepoint in packets when internal queue lengths exceed threshold K. Resulting, DCTCP delivers the same or better throughput than normal TCP, while using 90% less buffer space. It was found in [2] that DCTCP enables the applications to handle 10x the current background traffic, without impacting foreground traffic. Moreover, a 10x increase in foreground traffic did not cause any timeouts, and thus largely eliminates TCP incast collapse problems. The algorithm itself has already seen deployments in large production data centers since then. We did a long-term stress-test and analysis in a data center, short summary of our TCP incast tests with iperf compared to cubic: This test measured DCTCP throughput and latency and compared it with CUBIC throughput and latency for an incast scenario. In this test, 19 senders sent at maximum rate to a single receiver. The receiver simply ran iperf -s. The senders ran iperf -c <receiver> -t 30. All senders started simultaneously (using local clocks synchronized by ntp). This test was repeated multiple times. Below shows the results from a single test. Other tests are similar. (DCTCP results were extremely consistent, CUBIC results show some variance induced by the TCP timeouts that CUBIC encountered.) For this test, we report statistics on the number of TCP timeouts, flow throughput, and traffic latency. 1) Timeouts (total over all flows, and per flow summaries): CUBIC DCTCP Total 3227 25 Mean 169.842 1.316 Median 183 1 Max 207 5 Min 123 0 Stddev 28.991 1.600 Timeout data is taken by measuring the net change in netstat -s "other TCP timeouts" reported. As a result, the timeout measurements above are not restricted to the test traffic, and we believe that it is likely that all of the "DCTCP timeouts" are actually timeouts for non-test traffic. We report them nevertheless. CUBIC will also include some non-test timeouts, but they are drawfed by bona fide test traffic timeouts for CUBIC. Clearly DCTCP does an excellent job of preventing TCP timeouts. DCTCP reduces timeouts by at least two orders of magnitude and may well have eliminated them in this scenario. 2) Throughput (per flow in Mbps): CUBIC DCTCP Mean 521.684 521.895 Median 464 523 Max 776 527 Min 403 519 Stddev 105.891 2.601 Fairness 0.962 0.999 Throughput data was simply the average throughput for each flow reported by iperf. By avoiding TCP timeouts, DCTCP is able to achieve much better per-flow results. In CUBIC, many flows experience TCP timeouts which makes flow throughput unpredictable and unfair. DCTCP, on the other hand, provides very clean predictable throughput without incurring TCP timeouts. Thus, the standard deviation of CUBIC throughput is dramatically higher than the standard deviation of DCTCP throughput. Mean throughput is nearly identical because even though cubic flows suffer TCP timeouts, other flows will step in and fill the unused bandwidth. Note that this test is something of a best case scenario for incast under CUBIC: it allows other flows to fill in for flows experiencing a timeout. Under situations where the receiver is issuing requests and then waiting for all flows to complete, flows cannot fill in for timed out flows and throughput will drop dramatically. 3) Latency (in ms): CUBIC DCTCP Mean 4.0088 0.04219 Median 4.055 0.0395 Max 4.2 0.085 Min 3.32 0.028 Stddev 0.1666 0.01064 Latency for each protocol was computed by running "ping -i 0.2 <receiver>" from a single sender to the receiver during the incast test. For DCTCP, "ping -Q 0x6 -i 0.2 <receiver>" was used to ensure that traffic traversed the DCTCP queue and was not dropped when the queue size was greater than the marking threshold. The summary statistics above are over all ping metrics measured between the single sender, receiver pair. The latency results for this test show a dramatic difference between CUBIC and DCTCP. CUBIC intentionally overflows the switch buffer which incurs the maximum queue latency (more buffer memory will lead to high latency.) DCTCP, on the other hand, deliberately attempts to keep queue occupancy low. The result is a two orders of magnitude reduction of latency with DCTCP - even with a switch with relatively little RAM. Switches with larger amounts of RAM will incur increasing amounts of latency for CUBIC, but not for DCTCP. 4) Convergence and stability test: This test measured the time that DCTCP took to fairly redistribute bandwidth when a new flow commences. It also measured DCTCP's ability to remain stable at a fair bandwidth distribution. DCTCP is compared with CUBIC for this test. At the commencement of this test, a single flow is sending at maximum rate (near 10 Gbps) to a single receiver. One second after that first flow commences, a new flow from a distinct server begins sending to the same receiver as the first flow. After the second flow has sent data for 10 seconds, the second flow is terminated. The first flow sends for an additional second. Ideally, the bandwidth would be evenly shared as soon as the second flow starts, and recover as soon as it stops. The results of this test are shown below. Note that the flow bandwidth for the two flows was measured near the same time, but not simultaneously. DCTCP performs nearly perfectly within the measurement limitations of this test: bandwidth is quickly distributed fairly between the two flows, remains stable throughout the duration of the test, and recovers quickly. CUBIC, in contrast, is slow to divide the bandwidth fairly, and has trouble remaining stable. CUBIC DCTCP Seconds Flow 1 Flow 2 Seconds Flow 1 Flow 2 0 9.93 0 0 9.92 0 0.5 9.87 0 0.5 9.86 0 1 8.73 2.25 1 6.46 4.88 1.5 7.29 2.8 1.5 4.9 4.99 2 6.96 3.1 2 4.92 4.94 2.5 6.67 3.34 2.5 4.93 5 3 6.39 3.57 3 4.92 4.99 3.5 6.24 3.75 3.5 4.94 4.74 4 6 3.94 4 5.34 4.71 4.5 5.88 4.09 4.5 4.99 4.97 5 5.27 4.98 5 4.83 5.01 5.5 4.93 5.04 5.5 4.89 4.99 6 4.9 4.99 6 4.92 5.04 6.5 4.93 5.1 6.5 4.91 4.97 7 4.28 5.8 7 4.97 4.97 7.5 4.62 4.91 7.5 4.99 4.82 8 5.05 4.45 8 5.16 4.76 8.5 5.93 4.09 8.5 4.94 4.98 9 5.73 4.2 9 4.92 5.02 9.5 5.62 4.32 9.5 4.87 5.03 10 6.12 3.2 10 4.91 5.01 10.5 6.91 3.11 10.5 4.87 5.04 11 8.48 0 11 8.49 4.94 11.5 9.87 0 11.5 9.9 0 SYN/ACK ECT test: This test demonstrates the importance of ECT on SYN and SYN-ACK packets by measuring the connection probability in the presence of competing flows for a DCTCP connection attempt *without* ECT in the SYN packet. The test was repeated five times for each number of competing flows. Competing Flows 1 | 2 | 4 | 8 | 16 ------------------------------ Mean Connection Probability 1 | 0.67 | 0.45 | 0.28 | 0 Median Connection Probability 1 | 0.65 | 0.45 | 0.25 | 0 As the number of competing flows moves beyond 1, the connection probability drops rapidly. Enabling DCTCP with this patch requires the following steps: DCTCP must be running both on the sender and receiver side in your data center, i.e.: sysctl -w net.ipv4.tcp_congestion_control=dctcp Also, ECN functionality must be enabled on all switches in your data center for DCTCP to work. The default ECN marking threshold (K) heuristic on the switch for DCTCP is e.g., 20 packets (30KB) at 1Gbps, and 65 packets (~100KB) at 10Gbps (K > 1/7 * C * RTT, [4]). In above tests, for each switch port, traffic was segregated into two queues. For any packet with a DSCP of 0x01 - or equivalently a TOS of 0x04 - the packet was placed into the DCTCP queue. All other packets were placed into the default drop-tail queue. For the DCTCP queue, RED/ECN marking was enabled, here, with a marking threshold of 75 KB. More details however, we refer you to the paper [2] under section 3). There are no code changes required to applications running in user space. DCTCP has been implemented in full *isolation* of the rest of the TCP code as its own congestion control module, so that it can run without a need to expose code to the core of the TCP stack, and thus nothing changes for non-DCTCP users. Changes in the CA framework code are minimal, and DCTCP algorithm operates on mechanisms that are already available in most Silicon. The gain (dctcp_shift_g) is currently a fixed constant (1/16) from the paper, but we leave the option that it can be chosen carefully to a different value by the user. In case DCTCP is being used and ECN support on peer site is off, DCTCP falls back after 3WHS to operate in normal TCP Reno mode. ss {-4,-6} -t -i diag interface: ... dctcp wscale:7,7 rto:203 rtt:2.349/0.026 mss:1448 cwnd:2054 ssthresh:1102 ce_state 0 alpha 15 ab_ecn 0 ab_tot 735584 send 10129.2Mbps pacing_rate 20254.1Mbps unacked:1822 retrans:0/15 reordering:101 rcv_space:29200 ... dctcp-reno wscale:7,7 rto:201 rtt:0.711/1.327 ato:40 mss:1448 cwnd:10 ssthresh:1102 fallback_mode send 162.9Mbps pacing_rate 325.5Mbps rcv_rtt:1.5 rcv_space:29200 More information about DCTCP can be found in [1-4]. [1] http://simula.stanford.edu/~alizade/Site/DCTCP.html [2] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf [3] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf [4] http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-00 Joint work with Florian Westphal and Glenn Judd. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com> Acked-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-23sock-diag: Report shutdown for inet and unix sockets (v2)Pavel Emelyanov
Make it simple -- just put new nlattr with just sk->sk_shutdown bits. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-13UAPI: (Scripted) Disintegrate include/linuxDavid Howells
Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Dave Jones <davej@redhat.com>