aboutsummaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2020-04-02mm: introduce fault_signal_pending()Peter Xu
For most architectures, we've got a quick path to detect fatal signal after a handle_mm_fault(). Introduce a helper for that quick path. It cleans the current codes a bit so we don't need to duplicate the same check across archs. More importantly, this will be an unified place that we handle the signal immediately right after an interrupted page fault, so it'll be much easier for us if we want to change the behavior of handling signals later on for all the archs. Note that currently only part of the archs are using this new helper, because some archs have their own way to handle signals. In the follow up patches, we'll try to apply this helper to all the rest of archs. Another note is that the "regs" parameter in the new helper is not used yet. It'll be used very soon. Now we kept it in this patch only to avoid touching all the archs again in the follow up patches. [peterx@redhat.com: fix sparse warnings] Link: http://lkml.kernel.org/r/20200311145921.GD479302@xz-x1 Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-4-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: fix __get_user_pages() on fault retry of hugetlbPeter Xu
When follow_hugetlb_page() returns with *locked==0, it means we've got a VM_FAULT_RETRY within the fauling process and we've released the mmap_sem. When that happens, we should stop and bail out. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Matthew Wilcox <willy@infradead.org> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-3-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: rename "nonblocking" to "locked" where properPeter Xu
Patch series "mm: Page fault enhancements", v6. This series contains cleanups and enhancements to current page fault logic. The whole idea comes from the discussion between Andrea and Linus on the bug reported by syzbot here: https://lkml.org/lkml/2017/11/2/833 Basically it does two things: (a) Allows the page fault logic to be more interactive on not only SIGKILL, but also the rest of userspace signals, and, (b) Allows the page fault retry (VM_FAULT_RETRY) to happen for more than once. For (a): with the changes we should be able to react faster when page faults are working in parallel with userspace signals like SIGSTOP and SIGCONT (and more), and with that we can remove the buggy part in userfaultfd and benefit the whole page fault mechanism on faster signal processing to reach the userspace. For (b), we should be able to allow the page fault handler to loop for even more than twice. Some context: for now since we have FAULT_FLAG_ALLOW_RETRY we can allow to retry the page fault once with the same interrupt context, however never more than twice. This can be not only a potential cleanup to remove this assumption since AFAIU the code itself doesn't really have this twice-only limitation (though that should be a protective approach in the past), at the same time it'll greatly simplify future works like userfaultfd write-protect where it's possible to retry for more than twice (please have a look at [1] below for a possible user that might require the page fault to be handled for a third time; if we can remove the retry limitation we can simply drop that patch and those complexity). This patch (of 16): There's plenty of places around __get_user_pages() that has a parameter "nonblocking" which does not really mean that "it won't block" (because it can really block) but instead it shows whether the mmap_sem is released by up_read() during the page fault handling mostly when VM_FAULT_RETRY is returned. We have the correct naming in e.g. get_user_pages_locked() or get_user_pages_remote() as "locked", however there're still many places that are using the "nonblocking" as name. Renaming the places to "locked" where proper to better suite the functionality of the variable. While at it, fixing up some of the comments accordingly. Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Brian Geffon <bgeffon@google.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220155353.8676-2-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: add pagemap.h to the fine documentationMatthew Wilcox (Oracle)
The documentation currently does not include the deathless prose written to describe functions in pagemap.h because it's not included in any rst file. Fix up the mismatches between parameter names and the documentation and add the file to mm-api. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Link: http://lkml.kernel.org/r/20200221220045.24989-1-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/vma: make is_vma_temporary_stack() available for general useAnshuman Khandual
Currently the declaration and definition for is_vma_temporary_stack() are scattered. Lets make is_vma_temporary_stack() helper available for general use and also drop the declaration from (include/linux/huge_mm.h) which is no longer required. While at this, rename this as vma_is_temporary_stack() in line with existing helpers. This should not cause any functional change. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1582782965-3274-4-git-send-email-anshuman.khandual@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/vma: make vma_is_foreign() available for general useAnshuman Khandual
Idea of a foreign VMA with respect to the present context is very generic. But currently there are two identical definitions for this in powerpc and x86 platforms. Lets consolidate those redundant definitions while making vma_is_foreign() available for general use later. This should not cause any functional change. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Link: http://lkml.kernel.org/r/1582782965-3274-3-git-send-email-anshuman.khandual@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/vma: move VM_NO_KHUGEPAGED into generic headerAnshuman Khandual
Patch series "mm/vma: some more minor changes", v2. The motivation here is to consolidate VMA flags and helpers in generic memory header and reduce code duplication when ever applicable. If there are other possible similar instances which might be missing here, please do let me me know. I will be happy to incorporate them. This patch (of 3): Move VM_NO_KHUGEPAGED into generic header (include/linux/mm.h). This just makes sure that no VMA flag is scattered in individual function files any longer. While at this, fix an old comment which is no longer valid. This should not cause any functional change. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Ingo Molnar <mingo@redhat.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1582782965-3274-2-git-send-email-anshuman.khandual@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/mapping_dirty_helpers: update huge page-table entry callbacksThomas Hellstrom
Following the update of pagewalk code commit a07984d48146 ("mm: pagewalk: add p4d_entry() and pgd_entry()") we can modify the mapping_dirty_helpers' huge page-table entry callbacks to avoid splitting when a huge pud or -pmd is encountered. Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Steven Price <steven.price@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200203154305.15045-1-thomas_os@shipmail.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: memcg: make memory.oom.group tolerable to task migrationRoman Gushchin
If a task is getting moved out of the OOMing cgroup, it might result in unexpected OOM killings if memory.oom.group is used anywhere in the cgroup tree. Imagine the following example: A (oom.group = 1) / \ (OOM) B C Let's say B's memory.max is exceeded and it's OOMing. The OOM killer selects a task in B as a victim, but someone asynchronously moves the task into C. mem_cgroup_get_oom_group() will iterate over all ancestors of C up to the root cgroup. In theory it had to stop at the oom_domain level - the memory cgroup which is OOMing. But because B is not an ancestor of C, it's not happening. Instead it chooses A (because it's oom.group is set), and kills all tasks in A. This behavior is wrong because the OOM happened in B, so there is no reason to kill anything outside. Fix this by checking it the memory cgroup to which the task belongs is a descendant of the oom_domain. If not, memory.oom.group should be ignored, and the OOM killer should kill only the victim task. Reported-by: Dan Schatzberg <dschatzberg@fb.com> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/20200316223510.3176148-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, memcg: prevent mem_cgroup_protected store tearingChris Down
The read side of this is all protected, but we can still tear if multiple iterations of mem_cgroup_protected are going at the same time. There's some intentional racing in mem_cgroup_protected which is ok, but load/store tearing should be avoided. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/d1e9fbc0379fe8db475d82c8b6fbe048876e12ae.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, memcg: prevent memory.swap.max load tearingChris Down
The write side of this is xchg()/smp_mb(), so that's all good. Just a few sites missing a READ_ONCE. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/bbec2c3d822217334855c8877a9d28b2a6d395fb.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, memcg: prevent memory.min load/store tearingChris Down
This can be set concurrently with reads, which may cause the wrong value to be propagated. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/e809b4e6b0c1626dac6945970de06409a180ee65.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, memcg: prevent memory.low load/store tearingChris Down
This can be set concurrently with reads, which may cause the wrong value to be propagated. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/448206f44b0fa7be9dad2ca2601d2bcb2c0b7844.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, memcg: prevent memory.max load tearingChris Down
This one is a bit more nuanced because we have memcg_max_mutex, which is mostly just used for enforcing invariants, but we still need to READ_ONCE since (despite its name) it doesn't really protect memory.max access. On write (page_counter_set_max() and memory_max_write()) we use xchg(), which uses smp_mb(), so that's already fine. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/50a31e5f39f8ae6c8fb73966ba1455f0924e8f44.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, memcg: prevent memory.high load/store tearingChris Down
A mem_cgroup's high attribute can be concurrently set at the same time as we are trying to read it -- for example, if we are in memory_high_write at the same time as we are trying to do high reclaim. Signed-off-by: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/2f66f7038ed1d4688e59de72b627ae0ea52efa83.1584034301.git.chris@chrisdown.name Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/memcontrol.c: make mem_cgroup_id_get_many() __maybe_unusedVincenzo Frascino
mem_cgroup_id_get_many() is currently used only when MMU or MEMCG_SWAP configuration options are enabled. Having them disabled triggers the following warning at compile time: linux/mm/memcontrol.c:4797:13: warning: `mem_cgroup_id_get_many' defined but not used [-Wunused-function] static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) Make mem_cgroup_id_get_many() __maybe_unused to address the issue. Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200305164354.48147-1-vincenzo.frascino@arm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02memcg: css_tryget_online cleanupsShakeel Butt
Currently multiple locations in memcg code, css_tryget_online() is being used. However it doesn't matter whether the cgroup is online for the callers. Online used to matter when we had reparenting on offlining and we needed a way to prevent new ones from showing up. The failure case for couple of these css_tryget_online usage is to fallback to root_mem_cgroup which kind of make bypassing the memcg limits possible for some workloads. For example creating an inotify group in a subcontainer and then deleting that container after moving the process to a different container will make all the event objects allocated for that group to the root_mem_cgroup. So, using css_tryget_online() is dangerous for such cases. Two locations still use the online version. The swapin of offlined memcg's pages and the memcg kmem cache creation. The kmem cache indeed needs the online version as the kernel does the reparenting of memcg kmem caches. For the swapin case, it has been left for later as the fallback is not really that concerning. With swap accounting enabled, if the memcg of the swapped out page is not online then the memcg extracted from the given 'mm' will be charged and if 'mm' is NULL then root memcg will be charged. However I could not find a code path where the given 'mm' will be NULL for swap-in case. Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/20200302203109.179417-1-shakeelb@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: memcontrol: recursive memory.low protectionJohannes Weiner
Right now, the effective protection of any given cgroup is capped by its own explicit memory.low setting, regardless of what the parent says. The reasons for this are mostly historical and ease of implementation: to make delegation of memory.low safe, effective protection is the min() of all memory.low up the tree. Unfortunately, this limitation makes it impossible to protect an entire subtree from another without forcing the user to make explicit protection allocations all the way to the leaf cgroups - something that is highly undesirable in real life scenarios. Consider memory in a data center host. At the cgroup top level, we have a distinction between system management software and the actual workload the system is executing. Both branches are further subdivided into individual services, job components etc. We want to protect the workload as a whole from the system management software, but that doesn't mean we want to protect and prioritize individual workload wrt each other. Their memory demand can vary over time, and we'd want the VM to simply cache the hottest data within the workload subtree. Yet, the current memory.low limitations force us to allocate a fixed amount of protection to each workload component in order to get protection from system management software in general. This results in very inefficient resource distribution. Another concern with mandating downward allocation is that, as the complexity of the cgroup tree grows, it gets harder for the lower levels to be informed about decisions made at the host-level. Consider a container inside a namespace that in turn creates its own nested tree of cgroups to run multiple workloads. It'd be extremely difficult to configure memory.low parameters in those leaf cgroups that on one hand balance pressure among siblings as the container desires, while also reflecting the host-level protection from e.g. rpm upgrades, that lie beyond one or more delegation and namespacing points in the tree. It's highly unusual from a cgroup interface POV that nested levels have to be aware of and reflect decisions made at higher levels for them to be effective. To enable such use cases and scale configurability for complex trees, this patch implements a resource inheritance model for memory that is similar to how the CPU and the IO controller implement work-conserving resource allocations: a share of a resource allocated to a subree always applies to the entire subtree recursively, while allowing, but not mandating, children to further specify distribution rules. That means that if protection is explicitly allocated among siblings, those configured shares are being followed during page reclaim just like they are now. However, if the memory.low set at a higher level is not fully claimed by the children in that subtree, the "floating" remainder is applied to each cgroup in the tree in proportion to its size. Since reclaim pressure is applied in proportion to size as well, each child in that tree gets the same boost, and the effect is neutral among siblings - with respect to each other, they behave as if no memory control was enabled at all, and the VM simply balances the memory demands optimally within the subtree. But collectively those cgroups enjoy a boost over the cgroups in neighboring trees. E.g. a leaf cgroup with a memory.low setting of 0 no longer means that it's not getting a share of the hierarchically assigned resource, just that it doesn't claim a fixed amount of it to protect from its siblings. This allows us to recursively protect one subtree (workload) from another (system management), while letting subgroups compete freely among each other - without having to assign fixed shares to each leaf, and without nested groups having to echo higher-level settings. The floating protection composes naturally with fixed protection. Consider the following example tree: A A: low = 2G / \ A1: low = 1G A1 A2 A2: low = 0G As outside pressure is applied to this tree, A1 will enjoy a fixed protection from A2 of 1G, but the remaining, unclaimed 1G from A is split evenly among A1 and A2, coming out to 1.5G and 0.5G. There is a slight risk of regressing theoretical setups where the top-level cgroups don't know about the true budgeting and set bogusly high "bypass" values that are meaningfully allocated down the tree. Such setups would rely on unclaimed protection to be discarded, and distributing it would change the intended behavior. Be safe and hide the new behavior behind a mount option, 'memory_recursiveprot'. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: memcontrol: clean up and document effective low/min calculationsJohannes Weiner
The effective protection of any given cgroup is a somewhat complicated construct that depends on the ancestor's configuration, siblings' configurations, as well as current memory utilization in all these groups. It's done this way to satisfy hierarchical delegation requirements while also making the configuration semantics flexible and expressive in complex real life scenarios. Unfortunately, all the rules and requirements are sparsely documented, and the code is a little too clever in merging different scenarios into a single min() expression. This makes it hard to reason about the implementation and avoid breaking semantics when making changes to it. This patch documents each semantic rule individually and splits out the handling of the overcommit case from the regular case. Michal Koutný also points out that the points of equilibrium as described in the existing example scenarios aren't actually accurate. Delete these examples for now to avoid confusion. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Link: http://lkml.kernel.org/r/20200227195606.46212-3-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: memcontrol: fix memory.low proportional distributionJohannes Weiner
Patch series "mm: memcontrol: recursive memory.low protection", v3. The current memory.low (and memory.min) semantics require protection to be assigned to a cgroup in an untinterrupted chain from the top-level cgroup all the way to the leaf. In practice, we want to protect entire cgroup subtrees from each other (system management software vs. workload), but we would like the VM to balance memory optimally *within* each subtree, without having to make explicit weight allocations among individual components. The current semantics make that impossible. They also introduce unmanageable complexity into more advanced resource trees. For example: host root `- system.slice `- rpm upgrades `- logging `- workload.slice `- a container `- system.slice `- workload.slice `- job A `- component 1 `- component 2 `- job B At a host-level perspective, we would like to protect the outer workload.slice subtree as a whole from rpm upgrades, logging etc. But for that to be effective, right now we'd have to propagate it down through the container, the inner workload.slice, into the job cgroup and ultimately the component cgroups where memory is actually, physically allocated. This may cross several tree delegation points and namespace boundaries, which make such a setup near impossible. CPU and IO on the other hand are already distributed recursively. The user would simply configure allowances at the host level, and they would apply to the entire subtree without any downward propagation. To enable the above-mentioned usecases and bring memory in line with other resource controllers, this patch series extends memory.low/min such that settings apply recursively to the entire subtree. Users can still assign explicit shares in subgroups, but if they don't, any ancestral protection will be distributed such that children compete freely amongst each other - as if no memory control were enabled inside the subtree - but enjoy protection from neighboring trees. In the above example, the user would then be able to configure shares of CPU, IO and memory at the host level to comprehensively protect and isolate the workload.slice as a whole from system.slice activity. Patch #1 fixes an existing bug that can give a cgroup tree more protection than it should receive as per ancestor configuration. Patch #2 simplifies and documents the existing code to make it easier to reason about the changes in the next patch. Patch #3 finally implements recursive memory protection semantics. Because of a risk of regressing legacy setups, the new semantics are hidden behind a cgroup2 mount option, 'memory_recursiveprot'. More details in patch #3. This patch (of 3): When memory.low is overcommitted - i.e. the children claim more protection than their shared ancestor grants them - the allowance is distributed in proportion to how much each sibling uses their own declared protection: low_usage = min(memory.low, memory.current) elow = parent_elow * (low_usage / siblings_low_usage) However, siblings_low_usage is not the sum of all low_usages. It sums up the usages of *only those cgroups that are within their memory.low* That means that low_usage can be *bigger* than siblings_low_usage, and consequently the total protection afforded to the children can be bigger than what the ancestor grants the subtree. Consider three groups where two are in excess of their protection: A/memory.low = 10G A/A1/memory.low = 10G, memory.current = 20G A/A2/memory.low = 10G, memory.current = 20G A/A3/memory.low = 10G, memory.current = 8G siblings_low_usage = 8G (only A3 contributes) A1/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G A2/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G A3/elow = parent_elow(10G) * low_usage(8G) / siblings_low_usage(8G) = 10.0G (the 12.5G are capped to the explicit memory.low setting of 10G) With that, the sum of all awarded protection below A is 30G, when A only grants 10G for the entire subtree. What does this mean in practice? A1 and A2 would still be in excess of their 10G allowance and would be reclaimed, whereas A3 would not. As they eventually drop below their protection setting, they would be counted in siblings_low_usage again and the error would right itself. When reclaim was applied in a binary fashion (cgroup is reclaimed when it's above its protection, otherwise it's skipped) this would actually work out just fine. However, since 1bc63fb1272b ("mm, memcg: make scan aggression always exclude protection"), reclaim pressure is scaled to how much a cgroup is above its protection. As a result this calculation error unduly skews pressure away from A1 and A2 toward the rest of the system. But why did we do it like this in the first place? The reasoning behind exempting groups in excess from siblings_low_usage was to go after them first during reclaim in an overcommitted subtree: A/memory.low = 2G, memory.current = 4G A/A1/memory.low = 3G, memory.current = 2G A/A2/memory.low = 1G, memory.current = 2G siblings_low_usage = 2G (only A1 contributes) A1/elow = parent_elow(2G) * low_usage(2G) / siblings_low_usage(2G) = 2G A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G While the children combined are overcomitting A and are technically both at fault, A2 is actively declaring unprotected memory and we would like to reclaim that first. However, while this sounds like a noble goal on the face of it, it doesn't make much difference in actual memory distribution: Because A is overcommitted, reclaim will not stop once A2 gets pushed back to within its allowance; we'll have to reclaim A1 either way. The end result is still that protection is distributed proportionally, with A1 getting 3/4 (1.5G) and A2 getting 1/4 (0.5G) of A's allowance. [ If A weren't overcommitted, it wouldn't make a difference since each cgroup would just get the protection it declares: A/memory.low = 2G, memory.current = 3G A/A1/memory.low = 1G, memory.current = 1G A/A2/memory.low = 1G, memory.current = 2G With the current calculation: siblings_low_usage = 1G (only A1 contributes) A1/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(1G) = 2G -> 1G A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(1G) = 2G -> 1G Including excess groups in siblings_low_usage: siblings_low_usage = 2G A1/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G -> 1G A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G -> 1G ] Simplify the calculation and fix the proportional reclaim bug by including excess cgroups in siblings_low_usage. After this patch, the effective memory.low distribution from the example above would be as follows: A/memory.low = 10G A/A1/memory.low = 10G, memory.current = 20G A/A2/memory.low = 10G, memory.current = 20G A/A3/memory.low = 10G, memory.current = 8G siblings_low_usage = 28G A1/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(28G) = 3.5G A2/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(28G) = 3.5G A3/elow = parent_elow(10G) * low_usage(8G) / siblings_low_usage(28G) = 2.8G Fixes: 1bc63fb1272b ("mm, memcg: make scan aggression always exclude protection") Fixes: 230671533d64 ("mm: memory.low hierarchical behavior") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Link: http://lkml.kernel.org/r/20200227195606.46212-2-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: kmem: rename (__)memcg_kmem_(un)charge_memcg() to __memcg_kmem_(un)charge()Roman Gushchin
Drop the _memcg suffix from (__)memcg_kmem_(un)charge functions. It's shorter and more obvious. These are the most basic functions which are just (un)charging the given cgroup with the given amount of pages. Also fix up the corresponding comments. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-7-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: memcg/slab: cache page number in memcg_(un)charge_slab()Roman Gushchin
There are many places in memcg_charge_slab() and memcg_uncharge_slab() which are calculating the number of pages to charge, css references to grab etc depending on the order of the slab page. Let's simplify the code by calculating it once and caching in the local variable. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-6-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: kmem: switch to nr_pages in (__)memcg_kmem_charge_memcg()Roman Gushchin
These functions are charging the given number of kernel pages to the given memory cgroup. The number doesn't have to be a power of two. Let's make them to take the unsigned int nr_pages as an argument instead of the page order. It makes them look consistent with the corresponding uncharge functions and functions like: mem_cgroup_charge_skmem(memcg, nr_pages). Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-5-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: kmem: rename memcg_kmem_(un)charge() into memcg_kmem_(un)charge_page()Roman Gushchin
Rename (__)memcg_kmem_(un)charge() into (__)memcg_kmem_(un)charge_page() to better reflect what they are actually doing: 1) call __memcg_kmem_(un)charge_memcg() to actually charge or uncharge the current memcg 2) set or clear the PageKmemcg flag Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: kmem: cleanup memcg_kmem_uncharge_memcg() argumentsRoman Gushchin
Drop the unused page argument and put the memcg pointer at the first place. This make the function consistent with its peers: __memcg_kmem_uncharge_memcg(), memcg_kmem_charge_memcg(), etc. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-3-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: kmem: cleanup (__)memcg_kmem_charge_memcg() argumentsRoman Gushchin
Patch series "mm: memcg: kmem API cleanup", v2. This patchset aims to clean up the kernel memory charging API. It doesn't bring any functional changes, just removes unused arguments, renames some functions and fixes some comments. Currently it's not obvious which functions are most basic (memcg_kmem_(un)charge_memcg()) and which are based on them (memcg_kmem_(un)charge()). The patchset renames these functions and removes unused arguments: TL;DR: was: memcg_kmem_charge_memcg(page, gfp, order, memcg) memcg_kmem_uncharge_memcg(memcg, nr_pages) memcg_kmem_charge(page, gfp, order) memcg_kmem_uncharge(page, order) now: memcg_kmem_charge(memcg, gfp, nr_pages) memcg_kmem_uncharge(memcg, nr_pages) memcg_kmem_charge_page(page, gfp, order) memcg_kmem_uncharge_page(page, order) This patch (of 6): The first argument of memcg_kmem_charge_memcg() and __memcg_kmem_charge_memcg() is the page pointer and it's not used. Let's drop it. Memcg pointer is passed as the last argument. Move it to the first place for consistency with other memcg functions, e.g. __memcg_kmem_uncharge_memcg() or try_charge(). Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200109202659.752357-2-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: memcg/slab: use mem_cgroup_from_obj()Roman Gushchin
Sometimes we need to get a memcg pointer from a charged kernel object. The right way to get it depends on whether it's a proper slab object or it's backed by raw pages (e.g. it's a vmalloc alloction). In the first case the kmem_cache->memcg_params.memcg indirection should be used; in other cases it's just page->mem_cgroup. To simplify this task and hide the implementation details let's use the mem_cgroup_from_obj() helper, which takes a pointer to any kernel object and returns a valid memcg pointer or NULL. Passing a kernel address rather than a pointer to a page will allow to use this helper for per-object (rather than per-page) tracked objects in the future. The caller is still responsible to ensure that the returned memcg isn't going away underneath: take the rcu read lock, cgroup mutex etc; depending on the context. mem_cgroup_from_kmem() defined in mm/list_lru.c is now obsolete and can be removed. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/20200117203609.3146239-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/memcontrol.c: allocate shrinker_map on appropriate NUMA nodeKirill Tkhai
The shrinker_map may be touched from any cpu (e.g., a bit there may be set by a task running everywhere) but kswapd is always bound to specific node. So allocate shrinker_map from the related NUMA node to respect its NUMA locality. Also, this follows generic way we use for allocation of memcg's per-node data. Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: http://lkml.kernel.org/r/fff0e636-4c36-ed10-281c-8cdb0687c839@virtuozzo.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm, memcg: fix build error around the usage of kmem_cachesYafang Shao
When I manually set default n to MEMCG_KMEM in init/Kconfig, bellow error occurs, mm/slab_common.c: In function 'memcg_slab_start': mm/slab_common.c:1530:30: error: 'struct mem_cgroup' has no member named 'kmem_caches' return seq_list_start(&memcg->kmem_caches, *pos); ^ mm/slab_common.c: In function 'memcg_slab_next': mm/slab_common.c:1537:32: error: 'struct mem_cgroup' has no member named 'kmem_caches' return seq_list_next(p, &memcg->kmem_caches, pos); ^ mm/slab_common.c: In function 'memcg_slab_show': mm/slab_common.c:1551:16: error: 'struct mem_cgroup' has no member named 'kmem_caches' if (p == memcg->kmem_caches.next) ^ CC arch/x86/xen/smp.o mm/slab_common.c: In function 'memcg_slab_start': mm/slab_common.c:1531:1: warning: control reaches end of non-void function [-Wreturn-type] } ^ mm/slab_common.c: In function 'memcg_slab_next': mm/slab_common.c:1538:1: warning: control reaches end of non-void function [-Wreturn-type] } ^ That's because kmem_caches is defined only when CONFIG_MEMCG_KMEM is set, while memcg_slab_start() will use it no matter CONFIG_MEMCG_KMEM is defined or not. By the way, the reason I mannuly undefined CONFIG_MEMCG_KMEM is to verify whether my some other code change is still stable when CONFIG_MEMCG_KMEM is not set. Unfortunately, the existing code has been already unstable since v4.11. Fixes: bc2791f857e1 ("slab: link memcg kmem_caches on their associated memory cgroup") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/1580970260-2045-1-git-send-email-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/swap_state.c: use the same way to count page in ↵Wei Yang
[add_to|delete_from]_swap_cache add_to_swap_cache() and delete_from_swap_cache() are counterparts, while currently they use different ways to count pages. It doesn't break anything because we only have two sizes for PageAnon, but this is confusing and not good practice. This patch corrects it by making both functions use hpage_nr_pages(). Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Link: http://lkml.kernel.org/r/20200315012920.2687-1-richard.weiyang@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: swap: use smp_mb__after_atomic() to order LRU bit setYang Shi
Memory barrier is needed after setting LRU bit, but smp_mb() is too strong. Some architectures, i.e. x86, imply memory barrier with atomic operations, so replacing it with smp_mb__after_atomic() sounds better, which is nop on strong ordered machines, and full memory barriers on others. With this change the vm-scalability cases would perform better on x86, I saw total 6% improvement with this patch and previous inline fix. The test data (lru-file-readtwice throughput) against v5.6-rc4: mainline w/ inline fix w/ both (adding this) 150MB 154MB 159MB Fixes: 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Link: http://lkml.kernel.org/r/1584500541-46817-2-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: swap: make page_evictable() inlineYang Shi
When backporting commit 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs") to our 4.9 kernel, our test bench noticed around 10% down with a couple of vm-scalability's test cases (lru-file-readonce, lru-file-readtwice and lru-file-mmap-read). I didn't see that much down on my VM (32c-64g-2nodes). It might be caused by the test configuration, which is 32c-256g with NUMA disabled and the tests were run in root memcg, so the tests actually stress only one inactive and active lru. It sounds not very usual in mordern production environment. That commit did two major changes: 1. Call page_evictable() 2. Use smp_mb to force the PG_lru set visible It looks they contribute the most overhead. The page_evictable() is a function which does function prologue and epilogue, and that was used by page reclaim path only. However, lru add is a very hot path, so it sounds better to make it inline. However, it calls page_mapping() which is not inlined either, but the disassemble shows it doesn't do push and pop operations and it sounds not very straightforward to inline it. Other than this, it sounds smp_mb() is not necessary for x86 since SetPageLRU is atomic which enforces memory barrier already, replace it with smp_mb__after_atomic() in the following patch. With the two fixes applied, the tests can get back around 5% on that test bench and get back normal on my VM. Since the test bench configuration is not that usual and I also saw around 6% up on the latest upstream, so it sounds good enough IMHO. The below is test data (lru-file-readtwice throughput) against the v5.6-rc4: mainline w/ inline fix 150MB 154MB With this patch the throughput gets 2.67% up. The data with using smp_mb__after_atomic() is showed in the following patch. Shakeel Butt did the below test: On a real machine with limiting the 'dd' on a single node and reading 100 GiB sparse file (less than a single node). Just ran a single instance to not cause the lru lock contention. The cmdline used is "dd if=file-100GiB of=/dev/null bs=4k". Ran the cmd 10 times with drop_caches in between and measured the time it took. Without patch: 56.64143 +- 0.672 sec With patches: 56.10 +- 0.21 sec [akpm@linux-foundation.org: move page_evictable() to internal.h] Fixes: 9c4e6b1a7027 ("mm, mlock, vmscan: no more skipping pagevecs") Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/1584500541-46817-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/swap_slots.c: assign|reset cache slot by value directlyWei Yang
Currently we use a tmp pointer, pentry, to transfer and reset swap cache slot, which is a little redundant. Swap cache slot stores the entry value directly, assign and reset it by value would be straight forward. Also this patch merges the else and if, since this is the only case we refill and repeat swap cache. Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Link: http://lkml.kernel.org/r/20200311055352.50574-1-richard.weiyang@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/swapfile: fix data races in try_to_unuse()Qian Cai
si->inuse_pages could be accessed concurrently as noticed by KCSAN, write to 0xffff98b00ebd04dc of 4 bytes by task 82262 on cpu 92: swap_range_free+0xbe/0x230 swap_range_free at mm/swapfile.c:719 swapcache_free_entries+0x1be/0x250 free_swap_slot+0x1c8/0x220 __swap_entry_free.constprop.19+0xa3/0xb0 free_swap_and_cache+0x53/0xa0 unmap_page_range+0x7e0/0x1ce0 unmap_single_vma+0xcd/0x170 unmap_vmas+0x18b/0x220 exit_mmap+0xee/0x220 mmput+0xe7/0x240 do_exit+0x598/0xfd0 do_group_exit+0x8b/0x180 get_signal+0x293/0x13d0 do_signal+0x37/0x5d0 prepare_exit_to_usermode+0x1b7/0x2c0 ret_from_intr+0x32/0x42 read to 0xffff98b00ebd04dc of 4 bytes by task 82499 on cpu 46: try_to_unuse+0x86b/0xc80 try_to_unuse at mm/swapfile.c:2185 __x64_sys_swapoff+0x372/0xd40 do_syscall_64+0x91/0xb05 entry_SYSCALL_64_after_hwframe+0x49/0xbe The plain reads in try_to_unuse() are outside si->lock critical section which result in data races that could be dangerous to be used in a loop. Fix them by adding READ_ONCE(). Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Marco Elver <elver@google.com> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/1582578903-29294-1-git-send-email-cai@lca.pw Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/swap.c: not necessary to export __pagevec_lru_add()Wei Yang
__pagevec_lru_add() is only used in mm directory now. Remove the export symbol. Signed-off-by: Wei Yang <richardw.yang@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200126011436.22979-1-richardw.yang@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/swapfile.c: fix comments for swapcache_prepareChen Wandun
The -EEXIST returned by __swap_duplicate means there is a swap cache instead -EBUSY Signed-off-by: Chen Wandun <chenwandun@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Link: http://lkml.kernel.org/r/20200212145754.27123-1-chenwandun@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: fix omission of check on FOLL_LONGTERM in gup fast pathPingfan Liu
FOLL_LONGTERM is a special case of FOLL_PIN. It suggests a pin which is going to be given to hardware and can't move. It would truncate CMA permanently and should be excluded. In gup slow path, where __gup_longterm_locked->check_and_migrate_cma_pages() handles FOLL_LONGTERM, but in fast path, there lacks such a check, which means a possible leak of CMA page to longterm pinned. Place a check in try_grab_compound_head() in the fast path to fix the leak, and if FOLL_LONGTERM happens on CMA, it will fall back to slow path to migrate the page. Some note about the check: Huge page's subpages have the same migrate type due to either allocation from a free_list[] or alloc_contig_range() with param MIGRATE_MOVABLE. So it is enough to check on a single subpage by is_migrate_cma_page(subpage) Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jason Gunthorpe <jgg@mellanox.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Link: http://lkml.kernel.org/r/1584876733-17405-3-git-send-email-kernelfans@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: rename nr as nr_pinned in get_user_pages_fast()Pingfan Liu
To better reflect the held state of pages and make code self-explaining, rename nr as nr_pinned. Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Link: http://lkml.kernel.org/r/1584876733-17405-2-git-send-email-kernelfans@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup/writeback: add callbacks for inaccessible pagesClaudio Imbrenda
With the introduction of protected KVM guests on s390 there is now a concept of inaccessible pages. These pages need to be made accessible before the host can access them. While cpu accesses will trigger a fault that can be resolved, I/O accesses will just fail. We need to add a callback into architecture code for places that will do I/O, namely when writeback is started or when a page reference is taken. This is not only to enable paging, file backing etc, it is also necessary to protect the host against a malicious user space. For example a bad QEMU could simply start direct I/O on such protected memory. We do not want userspace to be able to trigger I/O errors and thus the logic is "whenever somebody accesses that page (gup) or does I/O, make sure that this page can be accessed". When the guest tries to access that page we will wait in the page fault handler for writeback to have finished and for the page_ref to be the expected value. On s390x the function is not supposed to fail, so it is ok to use a WARN_ON on failure. If we ever need some more finegrained handling we can tackle this when we know the details. Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Acked-by: Will Deacon <will@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200306132537.783769-3-imbrenda@linux.ibm.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: dump_page(): additional diagnostics for huge pinned pagesJohn Hubbard
As part of pin_user_pages() and related API calls, pages are "dma-pinned". For the case of compound pages of order > 1, the per-page accounting of dma pins is accomplished via the 3rd struct page in the compound page. In order to support debugging of any pin_user_pages()- related problems, enhance dump_page() so as to report the pin count in that case. Documentation/core-api/pin_user_pages.rst is also updated accordingly. Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-13-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: improve dump_page() for compound pagesMatthew Wilcox (Oracle)
There was no protection against a corrupted struct page having an implausible compound_head(). Sanity check that a compound page has a head within reach of the maximum allocatable page (this will need to be adjusted if one of the plans to allocate 1GB pages comes to fruition). In addition, - Print the mapping pointer using %p insted of %px. The actual value of the pointer can be read out of the raw page dump and using %p gives a chance to correlate it with an earlier printk of the mapping pointer - Print the mapping pointer from the head page, not the tail page (the tail ->mapping pointer may be in use for other purposes, eg part of a list_head) - Print the order of the page for compound pages - Dump the raw head page as well as the raw page - Print the refcount from the head page, not the tail page Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Co-developed-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-12-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02selftests/vm: run_vmtests: invoke gup_benchmark with basic FOLL_PIN coverageJohn Hubbard
It's good to have basic unit test coverage of the new FOLL_PIN behavior. Fortunately, the gup_benchmark unit test is extremely fast (a few milliseconds), so adding it the the run_vmtests suite is going to cause no noticeable change in running time. So, add two new invocations to run_vmtests: 1) Run gup_benchmark with normal get_user_pages(). 2) Run gup_benchmark with pin_user_pages(). This is much like the first call, except that it sets FOLL_PIN. Running these two in quick succession also provide a visual comparison of the running times, which is convenient. The new invocations are fairly early in the run_vmtests script, because with test suites, it's usually preferable to put the shorter, faster tests first, all other things being equal. Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-11-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup_benchmark: support pin_user_pages() and related callsJohn Hubbard
Up until now, gup_benchmark supported testing of the following kernel functions: * get_user_pages(): via the '-U' command line option * get_user_pages_longterm(): via the '-L' command line option * get_user_pages_fast(): as the default (no options required) Add test coverage for the new corresponding pin_*() functions: * pin_user_pages_fast(): via the '-a' command line option * pin_user_pages(): via the '-b' command line option Also, add an option for clarity: '-u' for what is now (still) the default choice: get_user_pages_fast(). Also, for the commands that set FOLL_PIN, verify that the pages really are dma-pinned, via the new is_dma_pinned() routine. Those commands are: PIN_FAST_BENCHMARK : calls pin_user_pages_fast() PIN_BENCHMARK : calls pin_user_pages() In between the calls to pin_*() and unpin_user_pages(), check each page: if page_maybe_dma_pinned() returns false, then WARN and return. Do this outside of the benchmark timestamps, so that it doesn't affect reported times. Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-10-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: /proc/vmstat: pin_user_pages (FOLL_PIN) reportingJohn Hubbard
Now that pages are "DMA-pinned" via pin_user_page*(), and unpinned via unpin_user_pages*(), we need some visibility into whether all of this is working correctly. Add two new fields to /proc/vmstat: nr_foll_pin_acquired nr_foll_pin_released These are documented in Documentation/core-api/pin_user_pages.rst. They represent the number of pages (since boot time) that have been pinned ("nr_foll_pin_acquired") and unpinned ("nr_foll_pin_released"), via pin_user_pages*() and unpin_user_pages*(). In the absence of long-running DMA or RDMA operations that hold pages pinned, the above two fields will normally be equal to each other. Also: update Documentation/core-api/pin_user_pages.rst, to remove an earlier (now confirmed untrue) claim about a performance problem with /proc/vmstat. Also: update Documentation/core-api/pin_user_pages.rst to rename the new /proc/vmstat entries, to the names listed here. Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-9-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: page->hpage_pinned_refcount: exact pin counts for huge pagesJohn Hubbard
For huge pages (and in fact, any compound page), the GUP_PIN_COUNTING_BIAS scheme tends to overflow too easily, each tail page increments the head page->_refcount by GUP_PIN_COUNTING_BIAS (1024). That limits the number of huge pages that can be pinned. This patch removes that limitation, by using an exact form of pin counting for compound pages of order > 1. The "order > 1" is required because this approach uses the 3rd struct page in the compound page, and order 1 compound pages only have two pages, so that won't work there. A new struct page field, hpage_pinned_refcount, has been added, replacing a padding field in the union (so no new space is used). This enhancement also has a useful side effect: huge pages and compound pages (of order > 1) do not suffer from the "potential false positives" problem that is discussed in the page_dma_pinned() comment block. That is because these compound pages have extra space for tracking things, so they get exact pin counts instead of overloading page->_refcount. Documentation/core-api/pin_user_pages.rst is updated accordingly. Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-8-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: track FOLL_PIN pagesJohn Hubbard
Add tracking of pages that were pinned via FOLL_PIN. This tracking is implemented via overloading of page->_refcount: pins are added by adding GUP_PIN_COUNTING_BIAS (1024) to the refcount. This provides a fuzzy indication of pinning, and it can have false positives (and that's OK). Please see the pre-existing Documentation/core-api/pin_user_pages.rst for details. As mentioned in pin_user_pages.rst, callers who effectively set FOLL_PIN (typically via pin_user_pages*()) are required to ultimately free such pages via unpin_user_page(). Please also note the limitation, discussed in pin_user_pages.rst under the "TODO: for 1GB and larger huge pages" section. (That limitation will be removed in a following patch.) The effect of a FOLL_PIN flag is similar to that of FOLL_GET, and may be thought of as "FOLL_GET for DIO and/or RDMA use". Pages that have been pinned via FOLL_PIN are identifiable via a new function call: bool page_maybe_dma_pinned(struct page *page); What to do in response to encountering such a page, is left to later patchsets. There is discussion about this in [1], [2], [3], and [4]. This also changes a BUG_ON(), to a WARN_ON(), in follow_page_mask(). [1] Some slow progress on get_user_pages() (Apr 2, 2019): https://lwn.net/Articles/784574/ [2] DMA and get_user_pages() (LPC: Dec 12, 2018): https://lwn.net/Articles/774411/ [3] The trouble with get_user_pages() (Apr 30, 2018): https://lwn.net/Articles/753027/ [4] LWN kernel index: get_user_pages(): https://lwn.net/Kernel/Index/#Memory_management-get_user_pages [jhubbard@nvidia.com: add kerneldoc] Link: http://lkml.kernel.org/r/20200307021157.235726-1-jhubbard@nvidia.com [imbrenda@linux.ibm.com: if pin fails, we need to unpin, a simple put_page will not be enough] Link: http://lkml.kernel.org/r/20200306132537.783769-2-imbrenda@linux.ibm.com [akpm@linux-foundation.org: fix put_compound_head defined but not used] Suggested-by: Jan Kara <jack@suse.cz> Suggested-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-7-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: require FOLL_GET for get_user_pages_fast()John Hubbard
Internal to mm/gup.c, require that get_user_pages_fast() and __get_user_pages_fast() identify themselves, by setting FOLL_GET. This is required in order to be able to make decisions based on "FOLL_PIN, or FOLL_GET, or both or neither are set", in upcoming patches. Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-6-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: pass gup flags to two more routinesJohn Hubbard
In preparation for an upcoming patch, send gup flags args to two more routines: put_compound_head(), and undo_dev_pagemap(). Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-5-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm: introduce page_ref_sub_return()John Hubbard
An upcoming patch requires subtracting a large chunk of refcounts from a page, and checking what the resulting refcount is. This is a little different than the usual "check for zero refcount" that many of the page ref functions already do. However, it is similar to a few other routines that (like this one) are generally useful for things such as 1-based refcounting. Add page_ref_sub_return(), that subtracts a chunk of refcounts atomically, and returns an atomic snapshot of the result. Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-4-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02mm/gup: pass a flags arg to __gup_device_* functionsJohn Hubbard
A subsequent patch requires access to gup flags, so pass the flags argument through to the __gup_device_* functions. Also placate checkpatch.pl by shortening a nearby line. Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Link: http://lkml.kernel.org/r/20200211001536.1027652-3-jhubbard@nvidia.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>