path: root/Documentation/networking/baycom.txt
diff options
Diffstat (limited to 'Documentation/networking/baycom.txt')
1 files changed, 158 insertions, 0 deletions
diff --git a/Documentation/networking/baycom.txt b/Documentation/networking/baycom.txt
new file mode 100644
index 000000000000..4e68849d5639
--- /dev/null
+++ b/Documentation/networking/baycom.txt
@@ -0,0 +1,158 @@
+ Thomas M. Sailer, HB9JNX/AE4WA, <sailer@ife.ee.ethz.ch>
+!!NEW!! (04/98) The drivers for the baycom modems have been split into
+separate drivers as they did not share any code, and the driver
+and device names have changed.
+This document describes the Linux Kernel Drivers for simple Baycom style
+amateur radio modems.
+The following drivers are available:
+ This driver supports the SER12 modems either full or half duplex.
+ Its baud rate may be changed via the `baud' module parameter,
+ therefore it supports just about every bit bang modem on a
+ serial port. Its devices are called bcsf0 through bcsf3.
+ This is the recommended driver for SER12 type modems,
+ however if you have a broken UART clone that does not have working
+ delta status bits, you may try baycom_ser_hdx.
+ This is an alternative driver for SER12 type modems.
+ It only supports half duplex, and only 1200 baud. Its devices
+ are called bcsh0 through bcsh3. Use this driver only if baycom_ser_fdx
+ does not work with your UART.
+ This driver supports the par96 and picpar modems.
+ Its devices are called bcp0 through bcp3.
+ This driver supports the EPP modem.
+ Its devices are called bce0 through bce3.
+ This driver is work-in-progress.
+The following modems are supported:
+ser12: This is a very simple 1200 baud AFSK modem. The modem consists only
+ of a modulator/demodulator chip, usually a TI TCM3105. The computer
+ is responsible for regenerating the receiver bit clock, as well as
+ for handling the HDLC protocol. The modem connects to a serial port,
+ hence the name. Since the serial port is not used as an async serial
+ port, the kernel driver for serial ports cannot be used, and this
+ driver only supports standard serial hardware (8250, 16450, 16550)
+par96: This is a modem for 9600 baud FSK compatible to the G3RUH standard.
+ The modem does all the filtering and regenerates the receiver clock.
+ Data is transferred from and to the PC via a shift register.
+ The shift register is filled with 16 bits and an interrupt is signalled.
+ The PC then empties the shift register in a burst. This modem connects
+ to the parallel port, hence the name. The modem leaves the
+ implementation of the HDLC protocol and the scrambler polynomial to
+ the PC.
+picpar: This is a redesign of the par96 modem by Henning Rech, DF9IC. The modem
+ is protocol compatible to par96, but uses only three low power ICs
+ and can therefore be fed from the parallel port and does not require
+ an additional power supply. Furthermore, it incorporates a carrier
+ detect circuitry.
+EPP: This is a high-speed modem adaptor that connects to an enhanced parallel port.
+ Its target audience is users working over a high speed hub (76.8kbit/s).
+eppfpga: This is a redesign of the EPP adaptor.
+All of the above modems only support half duplex communications. However,
+the driver supports the KISS (see below) fullduplex command. It then simply
+starts to send as soon as there's a packet to transmit and does not care
+about DCD, i.e. it starts to send even if there's someone else on the channel.
+This command is required by some implementations of the DAMA channel
+access protocol.
+The Interface of the drivers
+Unlike previous drivers, these drivers are no longer character devices,
+but they are now true kernel network interfaces. Installation is therefore
+simple. Once installed, four interfaces named bc{sf,sh,p,e}[0-3] are available.
+sethdlc from the ax25 utilities may be used to set driver states etc.
+Users of userland AX.25 stacks may use the net2kiss utility (also available
+in the ax25 utilities package) to convert packets of a network interface
+to a KISS stream on a pseudo tty. There's also a patch available from
+me for WAMPES which allows attaching a kernel network interface directly.
+Configuring the driver
+Every time a driver is inserted into the kernel, it has to know which
+modems it should access at which ports. This can be done with the setbaycom
+utility. If you are only using one modem, you can also configure the
+driver from the insmod command line (or by means of an option line in
+ modprobe baycom_ser_fdx mode="ser12*" iobase=0x3f8 irq=4
+ sethdlc -i bcsf0 -p mode "ser12*" io 0x3f8 irq 4
+Both lines configure the first port to drive a ser12 modem at the first
+serial port (COM1 under DOS). The * in the mode parameter instructs the driver to use
+the software DCD algorithm (see below).
+ insmod baycom_par mode="picpar" iobase=0x378
+ sethdlc -i bcp0 -p mode "picpar" io 0x378
+Both lines configure the first port to drive a picpar modem at the
+first parallel port (LPT1 under DOS). (Note: picpar implies
+hardware DCD, par96 implies software DCD).
+The channel access parameters can be set with sethdlc -a or kissparms.
+Note that both utilities interpret the values slightly differently.
+Hardware DCD versus Software DCD
+To avoid collisions on the air, the driver must know when the channel is
+busy. This is the task of the DCD circuitry/software. The driver may either
+utilise a software DCD algorithm (options=1) or use a DCD signal from
+the hardware (options=0).
+ser12: if software DCD is utilised, the radio's squelch should always be
+ open. It is highly recommended to use the software DCD algorithm,
+ as it is much faster than most hardware squelch circuitry. The
+ disadvantage is a slightly higher load on the system.
+par96: the software DCD algorithm for this type of modem is rather poor.
+ The modem simply does not provide enough information to implement
+ a reasonable DCD algorithm in software. Therefore, if your radio
+ feeds the DCD input of the PAR96 modem, the use of the hardware
+ DCD circuitry is recommended.
+picpar: the picpar modem features a builtin DCD hardware, which is highly
+ recommended.
+Compatibility with the rest of the Linux kernel
+The serial driver and the baycom serial drivers compete
+for the same hardware resources. Of course only one driver can access a given
+interface at a time. The serial driver grabs all interfaces it can find at
+startup time. Therefore the baycom drivers subsequently won't be able to
+access a serial port. You might therefore find it necessary to release
+a port owned by the serial driver with 'setserial /dev/ttyS# uart none', where
+# is the number of the interface. The baycom drivers do not reserve any
+ports at startup, unless one is specified on the 'insmod' command line. Another
+method to solve the problem is to compile all drivers as modules and
+leave it to kmod to load the correct driver depending on the application.
+The parallel port drivers (baycom_par, baycom_epp) now use the parport subsystem
+to arbitrate the ports between different client drivers.
+vy 73s de
+Tom Sailer, sailer@ife.ee.ethz.ch
+hb9jnx @ hb9w.ampr.org