path: root/Documentation/lockdep-design.txt
diff options
Diffstat (limited to 'Documentation/lockdep-design.txt')
1 files changed, 63 insertions, 0 deletions
diff --git a/Documentation/lockdep-design.txt b/Documentation/lockdep-design.txt
index abf768c681e..5dbc99c04f6 100644
--- a/Documentation/lockdep-design.txt
+++ b/Documentation/lockdep-design.txt
@@ -221,3 +221,66 @@ when the chain is validated for the first time, is then put into a hash
table, which hash-table can be checked in a lockfree manner. If the
locking chain occurs again later on, the hash table tells us that we
dont have to validate the chain again.
+The validator tracks a maximum of MAX_LOCKDEP_KEYS number of lock classes.
+Exceeding this number will trigger the following lockdep warning:
+By default, MAX_LOCKDEP_KEYS is currently set to 8191, and typical
+desktop systems have less than 1,000 lock classes, so this warning
+normally results from lock-class leakage or failure to properly
+initialize locks. These two problems are illustrated below:
+1. Repeated module loading and unloading while running the validator
+ will result in lock-class leakage. The issue here is that each
+ load of the module will create a new set of lock classes for
+ that module's locks, but module unloading does not remove old
+ classes (see below discussion of reuse of lock classes for why).
+ Therefore, if that module is loaded and unloaded repeatedly,
+ the number of lock classes will eventually reach the maximum.
+2. Using structures such as arrays that have large numbers of
+ locks that are not explicitly initialized. For example,
+ a hash table with 8192 buckets where each bucket has its own
+ spinlock_t will consume 8192 lock classes -unless- each spinlock
+ is explicitly initialized at runtime, for example, using the
+ run-time spin_lock_init() as opposed to compile-time initializers
+ such as __SPIN_LOCK_UNLOCKED(). Failure to properly initialize
+ the per-bucket spinlocks would guarantee lock-class overflow.
+ In contrast, a loop that called spin_lock_init() on each lock
+ would place all 8192 locks into a single lock class.
+ The moral of this story is that you should always explicitly
+ initialize your locks.
+One might argue that the validator should be modified to allow
+lock classes to be reused. However, if you are tempted to make this
+argument, first review the code and think through the changes that would
+be required, keeping in mind that the lock classes to be removed are
+likely to be linked into the lock-dependency graph. This turns out to
+be harder to do than to say.
+Of course, if you do run out of lock classes, the next thing to do is
+to find the offending lock classes. First, the following command gives
+you the number of lock classes currently in use along with the maximum:
+ grep "lock-classes" /proc/lockdep_stats
+This command produces the following output on a modest system:
+ lock-classes: 748 [max: 8191]
+If the number allocated (748 above) increases continually over time,
+then there is likely a leak. The following command can be used to
+identify the leaking lock classes:
+ grep "BD" /proc/lockdep
+Run the command and save the output, then compare against the output from
+a later run of this command to identify the leakers. This same output
+can also help you find situations where runtime lock initialization has
+been omitted.