// Copyright (C) 2008-2011 Colin MacDonald // No rights reserved: this software is in the public domain. #include "testUtils.h" using namespace irr; using namespace core; template static bool compareVectors(const core::vector2d & compare, const core::vector2d & with) { if (!compare.equals(with)) { logTestString("\nERROR: vector2d %.16f, %.16f != vector2d %.16f, %.16f\n", (f64)compare.X, (f64)compare.Y, (f64)with.X, (f64)with.Y); assert(compare == with); return false; } return true; } template static bool doTests() { #define COMPARE_VECTORS(compare, with)\ if(!compareVectors(compare, with)) return false; vector2d vec(5, 5); vector2d otherVec(10, 20); if(!equals(vec.getDistanceFrom(otherVec), (T)15.8113883)) { logTestString("vector2d::getDistanceFrom() failed\n"); assert(0); return false; } vec.rotateBy(45); // Test implicit (0, 0) center COMPARE_VECTORS(vec, vector2d(0, (T)7.0710678118654755)); vec.normalize(); COMPARE_VECTORS(vec, vector2d(0, (T)1.0000000461060017)); vec.set(10, 10); vector2d center(5, 5); vec.rotateBy(-5, center); // -5 means rotate clockwise slightly, so expect the X to increase // slightly and the Y to decrease slightly. COMPARE_VECTORS(vec, vector2d((T)10.416752204197017, (T)9.5451947767204359)); vec.set(5, 5); vec.normalize(); COMPARE_VECTORS(vec, vector2d((T)0.7071068137884140, (T)0.7071068137884140)); vec.set(5, 5); otherVec.set(10, 20); logTestString("vector2d interpolation\n"); vector2d interpolated; (void)interpolated.interpolate(vec, otherVec, 0.f); COMPARE_VECTORS(interpolated, otherVec); // 0.f means all the second vector (void)interpolated.interpolate(vec, otherVec, 0.25f); COMPARE_VECTORS(interpolated, vector2d((T)8.75, (T)16.25)); (void)interpolated.interpolate(vec, otherVec, 0.75f); COMPARE_VECTORS(interpolated, vector2d((T)6.25, (T)8.75)); (void)interpolated.interpolate(vec, otherVec, 1.f); COMPARE_VECTORS(interpolated, vec); // 1.f means all the first vector interpolated = vec.getInterpolated(otherVec, 0.f); COMPARE_VECTORS(interpolated, otherVec); // 0.f means all the second vector interpolated = vec.getInterpolated(otherVec, 0.25f); COMPARE_VECTORS(interpolated, vector2d((T)8.75, (T)16.25)); interpolated = vec.getInterpolated(otherVec, 0.75f); COMPARE_VECTORS(interpolated, vector2d((T)6.25, (T)8.75)); interpolated = vec.getInterpolated(otherVec, 1.f); COMPARE_VECTORS(interpolated, vec); // 1.f means all the first vector logTestString("vector2d quadratic interpolation\n"); vector2d thirdVec(20, 10); interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.f); COMPARE_VECTORS(interpolated, vec); // 0.f means all the 1st vector interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.25f); COMPARE_VECTORS(interpolated, vector2d((T)7.8125, (T)10.9375)); interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.5f); COMPARE_VECTORS(interpolated, vector2d((T)11.25, (T)13.75)); interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 0.75f); COMPARE_VECTORS(interpolated, vector2d((T)15.3125, (T)13.4375)); interpolated = vec.getInterpolated_quadratic(otherVec, thirdVec, 1.f); COMPARE_VECTORS(interpolated, thirdVec); // 1.f means all the 3rd vector // check if getAngle returns values matching those of the double precision version logTestString("vector2d getAngle\n"); for (s32 i=0; i<200; ++i) { core::vector2d tmp((T)-1, (T)(-100+i)); core::vector2d ref(-1, -100+i); if (!equals(tmp.getAngle(),ref.getAngle(), 0.0003)) { logTestString("\nERROR: angle %.16f != angle %.16f\n", tmp.getAngle(), ref.getAngle()); return false; } f32 val = atan2f((float)tmp.Y, (float)tmp.X)*core::RADTODEG; if (val<=0) val=-val; else val=360-val; if (!equals((f32)tmp.getAngle(),val, 0.5f)) { logTestString("\nERROR: angle %.16f != atan2 %.16f\n vector %.16f, %.16f\n", tmp.getAngle(), val, tmp.X, tmp.Y); return false; } tmp = core::vector2d((T)1, (T)(-100+i)); ref = core::vector2d(1, -100+i); if (!equals(tmp.getAngle(),ref.getAngle(), 0.0003)) { logTestString("\nERROR: angle %.16f != angle %.16f\n", tmp.getAngle(), ref.getAngle()); return false; } val = atan2f((f32)tmp.Y, (f32)tmp.X)*core::RADTODEG; if (val<=0) val=-val; else val=360-val; if (!equals((f32)tmp.getAngle(),val, 0.5f)) { logTestString("\nERROR: angle %.16f != atan2 %.16f\n vector %.16f, %.16f\n", tmp.getAngle(), val, tmp.X, tmp.Y); return false; } } core::vector2d tmp(0, -100); core::vector2d ref(0, -100); if (!equals(tmp.getAngle(),ref.getAngle())) { logTestString("\nERROR: angle %.16f != angle %.16f\n", tmp.getAngle(), ref.getAngle()); return false; } tmp = core::vector2d(0, 100); ref = core::vector2d(0, 100); if (!equals(tmp.getAngle(),ref.getAngle())) { logTestString("\nERROR: angle %.16f != angle %.16f\n", tmp.getAngle(), ref.getAngle()); return false; } tmp = core::vector2d(static_cast(-1.53080559e-16), static_cast(2.49999523)); ref = core::vector2d(-1.53080559e-16, 2.49999523); if (!equals(tmp.getAngle(),ref.getAngle())) { logTestString("\nERROR: angle %.16f != angle %.16f\n", tmp.getAngle(), ref.getAngle()); return false; } core::vector2d zeroZero(0, 0); core::vector2d oneOne(1, 1); // Check if comparing (0.0, 0.0) with (1.0, 1.0) returns false. if(zeroZero == oneOne) { logTestString("\nERROR: vector2d %.16f, %.16f == vector2d %.16f, %.16f\n", (f64)zeroZero.X, (f64)zeroZero.Y, (f64)oneOne.X, (f64)oneOne.Y); return false; } return true; } /** Test the functionality of vector2d, particularly methods that involve calculations done using different precision than . Note that all reference vector2ds are creating using double precision values cast to (T), as we need to test . */ bool testVector2d(void) { bool f32Success = doTests(); if(f32Success) logTestString("vector2df tests passed\n\n"); else logTestString("\n*** vector2df tests failed ***\n\n"); bool f64Success = doTests(); if(f64Success) logTestString("vector2d tests passed\n\n"); else logTestString("\n*** vector2d tests failed ***\n\n"); bool s32Success = doTests(); if(s32Success) logTestString("vector2di tests passed\n\n"); else logTestString("\n*** vector2di tests failed ***\n\n"); return f32Success && f64Success && s32Success; }